Sample Biological Systems Engineering Academic Plan – Entering Major After Spring 2019

Fall Year 1 - 15 units
- **MAT 21A**
- **EBS 1**
- **UWP 1**
- **GE**
 - SS or AH; AGCH, DD, or WC

Winter Year 1 - 17 units
- **MAT 21B**
- **CHE 2A**
- **ENG 6**
- **ENG 3**
 - SS

Spring Year 1 - 17 units
- **MAT 21C**
- **PHY 9A**
- **CHE 2B**
- **GE**
 - SS or AH; AGCH, DD, or WC

Fall Year 2 - 17 units
- **MAT 21D**
- **PHY 9B**
- **BIS 2A**
- **GE**
 - SS or AH; AGCH, DD, or WC

Winter Year 2 - 17 units
- **MAT 27A**
- **PHY 9C**
- **EBS 75**
- **GE**
 - SS or AH; AGCH, DD, or WC

Spring Year 2 - 16 units
- **MAT 27B**
- **ENG 17**
- **ENG 35**
- **GE**
 - SS or AH; AGCH, DD, or WC

Fall Year 3 - 14-16 units
- **CHE 8A/118A**
- **STA 100**
- **ENG 102**
- **ENG 105**

Winter Year 3 - 15 units
- **CHE 2B; (CHE 2C for 118A)**
- **MAT 21B**
- **ENG 8B/118B**
- **ENG 100**
 - **CHE 8A/118A**
 - **EN 187**
 - **ENG 103**
 - **ENG 130**

Spring Year 3 - 16 units
- **ENG 104**
- **EBS 125**
- **EBS 170; ENG 105; BIS 2C**
- **GE**
 - SS or AH; AGCH, DD, or WC

Fall Year 4 - 15 units
- **EBS 127**
- **EBS 165**
- **EBS 170A**
 - BIS/ENG/EBS elective

Winter Year 4 - 16 units
- **EBS 125**
- **ENG 100**
- **ENG 102; ENG 104**

Spring Year 4 - 14 units
- **EBS 170C**
- **EBS 170CL**
- **GE**
 - SS or AH; AGCH, DD, or WC

*Pre-requisites are strictly enforced. *Pre-requisite may be taken concurrently.

BSE degree requirements meet most of you GE requirements, but not all. Most students will need the following:

- **9-20 units of Arts & Humanities (AH) topical breadth**
- **5-20 units of Social Sciences (SS) topical breadth**
- **3 units of American Cultures, Governance & History (ACGH) core literacy**
 - **3 units of Domestic Diversity (DD) core literacy**
 - **3 units of World Cultures (WC) core literacy**

This is a guide for planning purposes. Detailed and most up-to-date degree requirements can be found in the online UC Davis catalog.
Possible Electives for BSE Students

Electives allow you to tailor the major to your own professional and academic goals. The basic elective requirements are below:

- 4 units from any upper division EBS course EXCEPT EBS 189 or EBS 199
- 8 units from any upper division ENG, EBS, BIM, ECM, ECH, EMS, ECI, ECS, EEC, EME, or EAE course...
 - EXCEPT ECI 123; ECS 188; ENG 103, 160, and all 190-197, 199 courses.
- 9 units from any upper division BIS, MCB, EVE, EXB, MIC, NPB, or PLB course...
 - OR ABT 161; ANS 118, 143, 144, 146; ATM 133; AVS 100; CHA 101, 101L; ENT 100; ENH 102; ESM 120, 182; ESP 100, 110, 155; ETX 101, 131; FST 102A, 104L, 119, 120, 128, 159; IDI 141; PLS 110A; SSC 100; WFC 121.
 - EXCEPT BIS 132; EVE 175; EXB 102, 112, 115, 120, 121, 124, 125, 148; and all 190-199 courses.

Biological Systems Engineering is a broad major with many possible areas of specialization*, with some examples below.

<table>
<thead>
<tr>
<th>Biotechnology Engineering</th>
<th>Agricultural and Natural Resources Engineering</th>
<th>Food Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotechnology involves the handling and manipulation of living organisms or their components to produce useful products. Students specializing in biotechnology engineering integrate analysis and design with applied biology to solve problems in renewable energy production, large-scale biotechnical production, control of biological systems, and bio-based materials production.</td>
<td>With the world population expected to grow over the next several decades, major concerns lie with meeting the needs of agriculture and with the sustainable use of limited natural resources. Students specializing in agricultural and natural resources engineering combine analysis and design with applied biology to solve problems in producing, transporting, and processing biological products leading to food, fiber, energy, pharmaceuticals, and other human needs.</td>
<td>Producing the food we eat every day constitutes the largest industrial sector of the U.S. economy, and this production involves the work of engineers in a wide variety of food industries, both at home and around the world. Students specializing in food engineering design food processes and operate equipment and facilities for production of high quality, safe, and nutritious food with minimal impact of these operations on the environment.</td>
</tr>
<tr>
<td>Recommended electives:</td>
<td>Recommended electives:</td>
<td>Recommended electives:</td>
</tr>
<tr>
<td>• Biological science: BIS 101, 102, 103; MIC 102; MCB 120L; PLB 113</td>
<td>• Biological science: BIS 102; PLB 111; ENT 100; ANS 143, 144, 146; PLS 101, 114; MIC 120; NPB 101; ABT 163; SSC 100; WFC 120; ETX 101; ESP 100; HYD 124</td>
<td>• Biological sciences: BIS 101, 102, 103; ESP 110; ETX 101, FST 104, 104L, 119, 128; PLS 172</td>
</tr>
<tr>
<td>• Bio systems engineering: EBS 161</td>
<td>• Bio systems engineering: EBS 128</td>
<td>• Bio systems engineering: EBS 161</td>
</tr>
<tr>
<td>• Engineering: ECH 161B, 161C, 161L; ECI 149, 150, 153; ENG 180; EME 161, 163</td>
<td>• Engineering: BIM 109, 116; ECI 141, 142, 144, 145, 148A, 171; ENG 111, 180</td>
<td>• Engineering: ECH 157; EME 171, 172</td>
</tr>
</tbody>
</table>

* Following the recommended electives for a specialization does not result in specialization or concentration notation on your transcript or diploma.