You-Lo Hsieh, Ph.D

Dr. You-Lo Hsieh

Position Title
Distinguished Professor

  • Biological and Agricultural Engineering
  • Textiles Graduate Group
227 Everson
Bio
Research

Materials Chemistry and Engineering: nanocelluloses, biopolymers, nanofibers, functional applications

Biography

You-Lo Hsieh is a Distinguished Professor at the University of California, Davis. Professor Hsieh’s research integrates polymer chemistry with materials engineering to develop strategies to generate biological nanomaterials and to create 1D and 2D functional materials, hierarchical and hybrid nanofibers as well as micro-/meso-porous structures. She has mentored students in programs ranging from chemical engineering, materials science, forensic science to textiles as well as post-doctoral researchers and international scholars. Professor Hsieh has served leadership roles for academic programs, academic senate and college committees and graduate groups as well as professionally.

Teaching

FPS 161
FPS 161L
FPS 150
TXC 171
AET 130A

Technologies

UC Case No. 2016-909-0 Ultra Light Amphiphilic and Resilient Nanocellulose Aerogels and Foams
https://techtransfer.universityofcalifornia.edu/NCD/27150.html?int_campaign=Inventors-Other-Tech-section

UC Case No. 2017-364-0 Green Multi-Functional Telomerization for Tunable Hydrophobic Nanocellulose
https://techtransfer.universityofcalifornia.edu/NCD/27619.html

UC Case No. 2018-809-0 Conductive and Elastic Nanocellulose Aerogels (strain sensors, etc.)
https://techtransfer.universityofcalifornia.edu/NCD/29536.html

UC Case 2019-302-0 Nanocellulose-Assisted Exfoliation of Graphite to Few Layer Graphene (foldable and moisture-responsive nanopaper)
https://techtransfer.universityofcalifornia.edu/NCD/30089.html

UC Case 2020-030 Coaxial cellulose-based aerogel fibers as insulators (link TBA)

 

Representative Publications

 

Nanocellulose Functional Materials

  • Zhou, J., Y.-L. Hsieh, Nanocellulose aerogel-based porous coaxial fibers for thermal insulation, Nano Energy, 68, 104305 (2020).
  • Xu, X., Y.-L. Hsieh, Aqueous exfoliated graphene by amphiphilic nanocellulose and its application in moisture-responsive foldable actuators, Nanoscale, 11, 11719 – 11729 (2019).
  • Jiang, F.; S. Hu, Y.-L. Hsieh, Aqueous synthesis of compressible and thermally stable cellulose nanofibril-silica aerogel for CO2 adsorption, ACS Applied Nano Materials,1(12), 6701–6710 (2018).
  • Zhou, J., Y.-L. Hsieh, Conductive polymer protonated nanocellulose aerogels for tunable and linearly responsive strain sensors, ACS Applied Materials & Interfaces, 10(33), 27902–27910 (2018).
  • Jiang, F., Y.-L. Hsieh, Cellulose nanofibril aerogels: synergistic improvement of hydrophobicity, strength, thermal stability via crosslinking with diisocyanate, ACS Applied Materials & Interfaces, 9 (3), 2825–2834 (2017).
  • Jiang, F. and Y.-L. Hsieh, Synthesis of cellulose nanofibril bound silver nanoprism for surface enhanced Raman scattering, Biomacromolecules. 15 (10), 3608-3616 (2014).
  • Jiang, F., Y.-L. Hsieh, Amphiphilic superabsorbent cellulose nanofibril aerogels, Journal of Materials Chemistry A, 2: 6337-6342 (2014).

Cellulose Nanofibrils

  • Gu, J. and Y.-L. Hsieh, Alkaline cellulose nanofibrils from streamlined alkali treated rice straw, ACS Sustainable Chemistry & Engineering, 5: 1730-1737 (2017).
  • Jiang, F., Y.-L. Hsieh, Rice straw nanocelluloses: process-linked structures, properties and self-assembling into ultra-fine fibers, in ACS Symposium Series Book: "Nano-celluloses, their Preparation, Properties, and Applications" Umesh P. Agarwal1, Rajai H. Atalla2, Akira Isogai, Eds., 133-150 (2017).
  • Jiang, F., T. Kondo, Y.-L. Hsieh, Rice straw cellulose nanofibrils via aqueous counter collision and differential centrifugation and their self-assembled structures, ACS Sustainable Chemistry & Engineering, 4: 1697-1706 (2016).
  • Jiang, F., Y.-L. Hsieh, Self-assembling of TEMPO oxidized cellulose nanofibrils as effected by protonation of surface carboxyls and drying methods, ACS Sustainable Chemistry & Engineering, 4:1041-1049 (2016).
  • Hu, S., F. Jiang, Y.-L Hsieh, 1D Lignin based solid acid catalysts for direct hydrolysis of crystalline cellulose, ACS Sustainable Chemistry & Engineering, 3:2566-2574 (2015).
  • Jiang, F., J.L. Dallas, B. K. Ahn, Y.-L. Hsieh, 1D and 2D NMR of nanocellulose in aqueous colloidal suspensions, Carbohydrate Polymers 110: 360-366 (2014).
  • Jiang, F., S. Han, Y-L. Hsieh, Controlled defibrillation of rice straw cellulose and self-assembly of cellulose nanofibrils into highly crystalline fibrous materials, RSC Advances, 3(30): 12366-12375 (2013).

Cellulose Nanocrystals

  • Jiang, F., Y.-L. Hsieh, Novel holocellulose nanocrystals: amphiphilicity, O/W emulsion and self-assembly, Biomacromolecules, 16, 1422-1441 (2015).
  • Jiang, F., Y.-L. Hsieh, Cellulose nanocrystal isolation from tomato peels and assembled nanofibers, Carbohydrate Polymers, 122: 60-68 (2015).
  • Hsieh, Y.-L. Cellulose Nanocrystals and Self-Assembled Nanostructures from Cotton, Rice Straw and Grape Skin: A Source Perspective, Journal of Materials Science, 48(22): 7837-7846 (2013).
  • Lu, P. and Y.-L. Hsieh, Preparation and characterization of cellulose nanocrystals from rice straw, Carbohydrate Polymers 87:564-573 (2012).
  • Lu, P. and Y.-L. Hsieh, Cellulose isolation and core-shell nanostructures of cellulose nanocrystals from chardonnay grape skins, Carbohydrate Polymers 87:2546-2553 (2012).
  • Lu, P. and Y.-L. Hsieh, Preparation and properties of cellulose nanocrystals: rods, spheres, and network, Carbohydrate Polymers 82: 329–336 (2010).

Biobased Functional Fibers & Nanomaterials

  • Liu, X., Y.-L. Hsieh, Amphiphilic and amphoteric aqueous soy protein colloids and their cohesion and adhesion to cellulose, Industrial Crops and Products, 144C, 112041-112049 (2020).
  • Jiang, F., Y.-L. Hsieh, Dual wet and dry resilient cellulose II fibrous aerogel for hydrocarbon-water separation and energy storage applications, ACS Omega, 3, 3530−3539 (2018).
  • Hsieh, Y.-L., Cellulose nanofibers: Electrospinning and nanocellulose self-assemblies, Advanced Green Composites, Scrivener Publisher (with John Wiley & Sons), 2018.
  • Hu, S., Y.-L. Hsieh, Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent, Carbohydrate Polymers, 131,134-140 (2015).
  • Hu, S., Y.-L. Hsieh, Ultrafine microporous and mesoporous activated carbon fibers from alkali lignin, Journal of Materials Chemistry A, 1, 11278-11288 (2013).
  • Shen, W., Y.-L. Hsieh, Biocompatible sodium alginate fibers by aqueous processing and physical crosslinking, Carbohydrate Polymers, 102: 893-900 (2014).
  • Lu, P., Y.-L. Hsieh, Multi-walled carbon nanotube (MWCNT) reinforced cellulose fibers by electrospinning, ACS Applied Materials & Interfaces, 2(8), 2413-2420 (2010).

Silicon Oxycarbide & CNT-Alumina Nanoibers

  • Lu, P. and Y.-L. Hsieh, Effects of polymer matrices to the formation of silicon carbide (SiC) nanoporous fibers and nanowires under carbothermal reduction, Journal of Materials Chemistry 21: 1005-1012 (2011).
  • Lu, P., Q. Huang, A,K. Mukherjee, Y.-L. Hsieh, SiCO-doped carbon fibers with unique dual superhydrophilicity/superoleophilicity, ductile and capacitance properties, ACS Applied Materials & Interfaces 2(12): 3738-3744 (2010).
  • Lu, P., Q.Huang, B. Liu, Y, Bando, Y.-L. Hsieh, A,K. Mukherjee, Nanaoporous silicon oxycarbide fibers with luffa-like shells and superhydrophobility, Journal of American Chemical Society 131(30): 10346-10347 (2009).
  • Lu, P., Y.-L. Hsieh, Multi-Walled Carbon Nanotube (MWCNT) Reinforced Cellulose Fibers by Electrospinning, ACS Applied Materials & Interfaces 2(8), 2413-2420 (2010).

Nanofiber-Bound Enzymes

  • Lu, P. and Y.-L. Hsieh, Layer-by-layer self assembly of Cibacron Blue F3GA and lipase on ultra-fine cellulose fibrous membrane,Journal of Membrane Science 348(1-2), 21-27 (2009).
  • Lu, P. and Y.-L. Lipase bound cellulose nanofibrous membrane via Cibacron Blue F3GA affinity ligand, Journal of Membrane Science330(1-2): 288-296 (2009).
  • Li, L. and Y.-L. Hsieh, Lipase immobilization on ultra-fine poly(acrylic acid)/poly(vinyl alcohol) hydrogel fibers, Polymer Biocatalysis and Biomaterials II, 129-143 (2008).
  • Wang, Y. and Y.-L. Hsieh, Immobilization of lipase enzyme in polyvinyl alcohol (PVA) nanofibrous membranes, Journal of Membrane Science 209: 73-81 (2007).

Cellulose-Chitosan Hybrids and Nanofibers

  • Ding, B., J. Du, and Y.-L. Hsieh, Layer-by-layer self-assembled polysaccharide electrolytes on cellulose nanofiber, Journal Applied Polymer Science, 121: 2526-2534 (2011).
  • Du, J. and Y.-L. Hsieh, Cellulose-chitosan hybrid nanofibers from electrospinning of their esterderivatives, Cellulose 16(2): 247-260 (2009).
  • Du, J. and Y.-L. Hsieh, PEGylation of chitosan for improved solubility and fiber formation viaelectrospinning, Cellulose 14:543-552 (2007).
  • Li L. and Y.-L. Hsieh, Chitosan Bicomponent Nanofibers and Nano-porous Fibers, Carbohydrate Research 341(3):374-381 (2006).

Patents

Hsieh, Y.-L., M.M. Hartzell-Lawson, M.G. Boston, K.A. Clarkson, K.D. Collier and T.P. Graycar, Enzyme treatment to enhance wettability and absorbency of textiles, U.S. Patent No.6,0066,494 (May 23, 2000); New Zealand Patent 331262 (May 12, 2000); U.S. Patent No.6,436,696 (August 20, 2002); Mexico Patent 211167 (Oct 28, 2002); China Patent 97192783.9 (Jun 25, 2003); France Patent 0885311 (Nov 29, 2006); Germany Patent 0885311 (Nov 29, 2006); United Kingdom Patent 0885311 (Nov 29, 2006).

Tags